
NASA-CR-193086

NAG- 1- 1466

ADJOINT METHODS FOR

AERODYNAMIC WING DESIGN

NLPN 92-737

#

Semi-Annual Progress Report

May 1993

Principal Investigator: Bernard Grossman

Department of Aerospace and Ocean Engineering

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

Progress on NASA Research Grant NAG-l-1466 is summarized in the following draft of

a paper which is included with this report:

• Narducci, R., Grossman, B. and Haftka, R. T., "Design Sensitivity Algorithms for an

Inverse Design Problem Involving a Shock Wave", paper submitted to the AIAA 32nd

Aerospace Sciences Meeting, Jan. 1994.

(NASA-CR-193086) ADJOINT METHODS

FOR AEROOYNAMIC WING DESIGN

Semiannual Progress Report

(Virginia Polytechnic Inst. and
State Univ.) 18 p

G3/05 0164775



Design Sensitivity Algorithms for an Inverse
Design Problem Involving a Shock Wave

R. Narducci, B. Grossman, R.T. Haftka

Virginia Polytechnic Institute and State University
Dept. Aerospace and Ocean Engineering

Blacksburg, VA 24061

A model inverse design problem is used to investigate the effect of flow discontinuities on

the optimization process. The optimization involves finding the cross-sectional area distribution of

a duct that produces velocities that closely match a targeted velocity distribution. Quasi-one-

dimensional flow theory is used, and the target is chosen to have a shock wave in its distribution.

The objective function which quantifies the difference between the targeted and calculated velocity

distributions may become non-smooth due to the interaction between the shock and the discretiza-

tion of the f low field. This paper offers two techniques to resolve the resulting problems for the

optimization algorithms. The first, shock-fitting, involves careful integration of the objective func-

tion through the shock wave. The second, coordinate straining with shock penalty, uses a coordi-

nate transformation to align the calculated shock with the target and then adds a penalty propor-

tional to the square of the distance between the shocks. The techniques are tested using several

popular sensitivity and optimization methods, including fnite-differences, and direct and adjoint

discrete sensitivity methods Two optimization strategies, Gauss-Newton and sequential quadratic

programming (SQP), are used to drive the objective function to a minimum.

INTRODUCTION

Solutions to high speed aerodynamic

design problems generally require numerical

solutions of the Euler or Navier Stokes equa-

tions. These flows often contain regions of

steep gradients such as shock waves, contact

surfaces, and boundary and shear layers.

Analysis of these problems are computa-

tionally expensive. In the context of opti-

mized design which places an even greater

demand on computational resources, it is im-

portant that efficient sensitivity and optimiza-

tion algorithms are studied. In particular the

study focuses on the effect of shock waves in

the design optimization process.

Recently, Frank and Shubin (Ref. 1 and

2) studied the simple model problem of

inviscid compressible flow through a variable

area duct. They formulated an inverse design

problem and investigated several design

sensitivity techniques. Although their

designs contained shock waves, their results

did not indicate any adverse effects of shock

waves on the design optimization process.



This appearsto bedue to the fact that their

initial conditionsalwaysplacedtheshockat

or verynearthetargetedshockposition.

The objective of the presentwork is to

reexaminethemodelproblemconsideredby

Frank and Shubin and to develop efficient

strategies for treating flows with shock

waves.Themodelproblemstudiedin Ref. I

and2 offersseveralsimplificationswhichare

useful for this study. First, becauseof the

quasi-one-dimensionalflow approximation,

e.g., Anderson (Ref. 3), an exact algebraic

solutionmaybe found,sothatdiscretization
errorsof thenumericalsolutioncanbeaccu-

rately computed. Second,accuratefinite-
volume or finite-difference solutionsto the

governing Euler equations may be found

efficiently with shockscapturedvery accu-

rately using modern computational fluid

dynamicstechniques.

Following theinversedesignproblemof

Ref. 1 and 2, we attempt to determine a

geometry which closely approximates

prescribed flow solutions. Inverse problems

of this type are useful for this study, since a

prescribed flow field can correspond to a

known geometry, thereby giving an accurate

measure of design errors. Specifically, the

design variables are points defining the duct

area distribution as a cubic spline. This

differs slightly from Ref. 1 and 2, where

Frank and Shubin used coefficients of B-

splines. In this work B-splines are also

implemented to compare with their results.

Our treatment of the shock waves

involves the use of the method of strained

coordinates for perturbations of transonic

flows with shock waves, introduced by

Nixon (Ref. 4). This method has been

applied for airfoil approximations by Stahara

(Ref. 5) and utilized to find sensitivity

derivatives in an airfoil optimization by loh,

Grossman, and Haftka (Ref. 6).

This paper first reviews the governing

equations for quasi-one-dimensional flow

through a variable area duct, boundary

conditions and the flow solutions. In the

next sections the inverse design problem is

formulated and the objective function is

examined closely. The non-smooth nature of

the objective function for flows with shock

waves is shown to lead to convergence

difficulties in the optimization problem.

Methods of treating this difficulty, including

shock-fitting and the coordinate straining are

described. Next the optimization procedures

used for this problem are discussed. Then

finite-difference, direct-discrete and adjoint-

discrete methods for computing design

sensitivities are presented. Results and a

discussion of the advantages and disad-

vantages of the sensitivity and optimization

algorithms conclude this report.

ANALYSIS

Governing Equations

The governing equations for steady,

quasi-one-dimensional flow through a duct of

varying cross sectional area are the Euler

equations,
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(pu2+ p)A +

[(peo + p)uAjx 0 pax

=o. (1)

The domain, x, varies from 0 to 1, p is the

density, u is the velocity, A is the area, p is

the pressure, and eo is the total energy per

unit mass. The equation of state for a perfect

gas closes the system,

p = (y- 1)pe, (2)

where e is the energy per unit mass, and _, is

the ratio of specific heats assumed to be

constant. Following the derivation in Ref. I,

the first and third components of (1) may be

integrated directly, and after algebraic

manipulation the system is reduced to a single

ordinary differential equation in u,

fx + g = 0, (3)

where

f(u) = u + (Y - 1) 2ho, (4)
(7+1) u

A y+ u- ,
(5)

and exit conditions, respectively. These

conditions were used in Ref. 1.

The Euler equations are solved using

three methods to aid in understanding the

effects of the sharpness of the shock on the

design process. One method is analytic and

an exact solution is obtained. Two finite-

volume formulations are used to get approx-

imate solutions. The finite-volume methods

used are Godunov and artificial viscosity.

Exact Solution

The exact solution is arrived at by inte-

grating (3) over regions where the solution is

smooth. The result from Ref. 1 is

Au(2h o - u2) I/('¢-0 = k, (6)

where k is the constant of integration.

Equation (6) is applied over the region from

the inlet to the position of the shock wave,

and again from the position of the shock

wave to the exit. The constant, k, increases

across the shock and is found from the

boundary conditions at the inlet and exit for

each application of the solution. The position

of the shock which is the boundary of the

right and left solution is determined by satis-

fying the Rankine-Hugoniot relation

and ho is the total enthalpy per unit mass.

We specify inlet and exit velocities to get

a unique solution to the governing differential

equations. Velocity boundary values are

normalized with respect to the speed of sound

at the inlet and are 0.506 and 1.299 for inlet

_,-1

ULU R = u2 = 2hoy + 1,
(7)

where UL and UR are the left and right values

of the velocity at the shock. The method for



obtainingtheexactsolutionis showngraphi-

cally in figure 1.

Finite-Volume Solutions

A numerical solution to (3) is obtained by

adding an unphysical time derivative and

marching to a steady state,

ut+fx +g =0. (8)

Time integration is performed using Jameson

four-stage Runge-Kutta. Distance along the

duct is discretized with uj evaluated at the cell

centers and fluxes evaluated at the cell faces.

The spatial derivative is replaced with the

f'mite-volume formulation

ut + fj+l/2; - f j-I/2, + gJ = 0. (9)
Ax

Using the Godunov scheme described in Ref.

1, the fluxes are computed according to

f j+1/2 =

"fj+l' U j, Uj+ 1 < U,

f j, Uj, Uj+ 1 > U,

f., Uj < U, < Uj+ 1'

max(fj, fj+l), uj+ 1 < u. < uj

(10)

where fj+l = f(uj+l), etc., and * indicates

sonic flow. This formulation yields a solu-

tion containing a sharp shock. An alternative

to the Godunov formulation is the artificial

viscosity scheme used in Ref. 1 as

fj+l/2 = l[fj+l + fj - a(Uj+l - u j)], (11)

t supersonic

u(0) subsonic

u(1)I-- ,
x--0 xs x=l

Figure 1: Diagram of the exact solution algorithm as
described in Ref. 1.

where _ is an artificial viscosity parameter

which is related to the numerical dissipation.

The exact solution resolves the shock

precisely, while the Godunov scheme smears

the shock over two grid points. The artificial

viscosity parameter is a control of the amount

of shock smearing. For example, ct = 1 and

tx = 4 spread the shock over approximately

5% and 10% of the domain respectively; 0_ =

12 virtually eliminates the discontinuity. The

exact and numerical solutions for the target

area distribution are compared in figure 2

using a computational domain of 41 grid

points.

1.8

1.6

1.4

•_ 1.2

1.0
0.8

0.6

0.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Distance Along Duct

Figure 2: A comparison of solutions contaimng
shocks.
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DESIGN PROBLEM

Area Description

The design problem involves finding an

area distribution so that the solution to (3)

closely matches a given velocity distribution

containing a shock. The area distribution is

computed at discrete points in the domain

from a set of design variables, _. Thus the

solution to the design problem is expressed

as a set of design variables.

The formulation of the area distribution

from the design variables is not unique. In

this work, a cubic spline is fitted through the

area at specified points along the duct as

shown schematically in figure 3. The design

variables to be optimized are the values of the

area at these points. Inlet and exit areas are

fixed at normalized values of 1.05 and 1.745.

Clamped boundary conditions, i.e. zero slope

at the ends are imposed to determine the

spline uniquely. Design cases presented in

this paper contain up to 20 design variables

evenly distributed along the interior of the

duct.

An alternate method of formulating the

area from design variables involves B-

splines. This formulation e.g., Gerald and

Wheatly Ref. 7, provides smooth curves and

is implemented in this study for the purpose

of comparing to the work of Frank and

Shubin.

A target velocity distribution was created

by solving (3) using an area distribution

described by the cubic

A(x) = -1.39x 3 + 2.085x 2 + 1.05. (12)

This area profile has the properties of A(0) =

1.05, A(1) = 1.745, and zero slope at the

ends. The cubic spline formulation can

match (12) exactly and will serve as a check

on our final design.

A Non-smooth Objective Function

To quantify how well a calculated veloc-

ity distribution compares to the target, we

define the objective function

1 1

I(_) = _ I (fi- u)2dx'
0

(13)

l A(x._ _.j_1 _-"

X

Figure 3: Design variables describing the area distribu-
tion

where fi = fi(x) is the target velocity distri-

bution through the duct, and u = u(x;_) is

the calculated velocity distribution. The

velocities are normalized by the speed of

sound at the inlet. In the discretization of the

problem, the integral is approximated using

the trapezoidal rule



1 1 2 2 N-I

I(_) =717(ri +rl_)+ Eri2],
i=2

where

(14)

r=(fi-u)-_-_, (15)

and N is the number of grid points.

Boundary conditions specify u at the inlet and

exit to match the target exactly reducing (14)

to

N-1

(16)

An optimum design is achieved when (16) is

a minimum.

Making the trapezoidal rule approxima-

tion without regard to the position of the

shock wave results in a non-smooth objective

function. In figure 4, the objective function

is drawn for a design problem involving one

design variable and exact solutions to the

governing equations of fluid motion. In this

case the objective function is discontinuous.

The jumps in the objective function result

from the combination of the shock wave and

0.1

008i"_ 0.06
g.h

o
_ 0.04

0.02 i............. i.............. .b................... i .............. -/...............

J.... i.... i....
1.1 1.2 1.3 1.4. 1.5 !.6 1.7

I)istan¢¢ Along Duct

Figure 4: Objective function plot for a one design
variable case using an exact flow solver.

the numerical evaluation of the objective

function. The calculation of the objective

function (16) does not involve any specific

information about the location of the shock.

Thus for small perturbations of the area

distribution, provided the shock remains

between the same grid points, the value of the

objective function changes very little. The

objective function is dominated by the

differences in the target and calculated

velocity in the segment between the shocks.

Figure 5 is a typical plot of r = (_- u)'4-A-x

and demonstrates this effect. For pertur-

bations of the area distribution which just

moves the shock across the grid line, the

objective function changes dramatically. On

the other hand, a perturbation which moves

the shock just inside the grid line will have

almost no effect.

Without a clear picture of the nature of the

objective function, one might try increasing

the number of grid points to reduce round-off

errors involved in the calculation of the

design sensitivities. However, this will only

create more "stairs" in the objective function

0.1

0.0

-0.1

-0.2

targetshock

0.0 0.2 0.4 0.6 0.8 1.0

Distance Along Duet

Figure 5: r and hence the objective function domi-
nated by the region between the shock waves.
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asnow therearemorecell centersfor which

the shock wave passes through. Thus

insteadof helping,theproblemisworsened.

Using a numericalsolution for theflow
solver,theresolutionof theshockdecreases,

and the objective function while no longer

discontinuous,remainsnon-smooth.Figure

6 is aplot of theobjectivefunctioncalculated
via theGodunov scheme,which smearsthe

shock over 2 grid points. For a highly

smearedshock,computedusingtheartificial
viscosity schemewith ct = 1, theobjective

function appearssmooth (figure 7). The

smooth objective function has a clear

advantage over the discontinuous one,

0.10

= 0.08
0

0.06
rL

> 0.04
¢1

_" 0.02

0.00

"1"1"1"1"1"

1.1 1.2 1.3 1.4 1.5 1.6 1.7

Design Variable

Figure 6: Objective function plot for a one variable
design problem using Godunov flow solver.

0.08

= 0.06o.9.

_ 0.04
>

_0.02
O

0.00

• I " I " I " I " I "

1.1 1.2 1.3 1.4 1.5 1.6 1.7

Design Variable

Figure 7: Objective function plot for a one variable
design problem using an artificial viscosity solver.

unfortunately this comes at the expense of the

accuracy of the flow solution. However, as

the grid is refined, the problem will reappear.

Shock-Fitting

A more precise evaluation of the integral

in (13) involves first dividing the integral at

the location of the discontinuities and then

applying the trapezoidal rule to each segment

of the function. The objective function

contains two shocks, one from the target

distribution and one from the calculated

distribution, thus the integral is divided into

three segments,

_S
I = (fi - u)2dx +

fiX_(u -- u)2dx +

fl -- u)Edx, (17)

where _s and xs are the positions of the target

and calculated shock waves respectively.

Implied in this procedure is the knowledge of

the precise locations of the shocks and the

values of _ and u on either side of both

shocks.

Applying numerical integration in this

manner with exact solutions to (3) produces a

well-behaved objective function (figure 8).

(The small wiggles are due to plotting

resolution and will be corrected in the final

version of the paper.)
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Figure 8: Precise numerical integration of equation
13 yields a smooth objective function

The difficulty in this method arises when

the shock is smeared and the jump in velocity

across the shock is not obvious. Using a

fabricated definition for shock location may

locate the shock in a consistent manner from

test case to test case, but defining a right and

left value for the velocity on either side of the

shock is difficult.

Coordinate Straining and Shock Penalty

Another approach to dealing with an

objective function which is non-smooth due

to the presence of shock waves is the method

of coordinate straining as developed by

Nixon, Ref. 4. We utilize this method to

align the target and the calculated shock

waves, effectively ensuring the continuity of

the objective function.

The implementation of coordinate strain-

ing involves defining a function, s(x), which

equals zero at the inlet and exit, and has a

value of 1 at the position of the target shock.

The function is not unique, and here we

choose from Ref. 4,

s(x)= x 1-x (18)

The distance between shocks is defined as

AXs = is - Xs. (19)

The calculated velocity distribution is strained

proportionately to the distance between

shocks according to

fi= u(x - sAxs). (20)

To apply (20) to in a discrete sense, we

determine a grid index M such that

x M < x i- sAx s < XM+ 1. Then using linear

interpolation, the strained velocity (20)

becomes

Ui = UM+ UM+I-- UM (Xi-- S/_tXs-- XM).
Ax

(21)

Coordinate straining will transform the

velocity distribution of figure 9 to that in

figure 10.

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.0

• l " I " I " I "

Target

Test

I • I • I • I .

0.2 0.4 0.6 0.8 1.0

Distance Along Duct

Figure 9: Typical velocity profile of target and calcu-
lated velocity distribution. Region between shocks
dominates evaluation of the objective function.
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Figure 10: Sa'ained velocity distribution.

In the evaluation of the objective func-

tion, using fi in place of u, the dominating

terms which exist in the region between the

calculated and target shocks are removed. In

the process of removing the staircase, the

objective function becomes very flat near the

minimum, thus slowing convergence (figure

11). Using this technique, we rely complete-

ly on the small differences in velocities

outside the shock region to drive the area to

the target. Often this is enough to improve

the design, but not enough to achieve the best

possible one.

To shape the objective function to capture

O

O

O

1.2

1.0

0.8

0.6

0.4

0.2

0.0

• I I " I • I " I "

1.1 1.2 1.3 1.4 1.5 1.6

Design Variable

.7

Figure 12: Modified objective function, o'= 5.

the valley of figure (8), a shock penalty

proportional to the square of the difference

between the calculated and target shock wave

is added to the strained objective function,

yielding,

N-1

(22)

where ri = (ui- fii) "_-'_', and o is a positive

constant. Values of o can be chosen so that

in the first design iteration (22) equals (13).

Figure 12 shows the objective function

modified by coordinate straining and shock

penalty.

.m
o
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o

©
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0.003

0.002
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0.000
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Figure 11: Strained objective function.

OPTIMIZATION ALGORITHMS

Two optimization strategies were used to

solve the design problem. One is the Gauss-

Newton method which requires some deriva-

tion for application to the objective function

defined by the coordinate straining and shock

penalty technique. The second, an SQP

algorithm, can be applied without any special

treatment to both the objective functions.



Gauss-Newton Method

In this section the Gauss-Newton opti-

mization algorithm is applied to the function

defined by (22). A necessary condition for a

minimum is

N-I _:OI
?, , . a_x_

_J= i=2E i_-_-°(xs-Xs)_j =0'.,j (23)

for j = 1 .... n where n is the number of

design variables. The solution to the opti-

mization problem requires finding the root

that satisfies VI(_) = 0. Given the solution at

the lth iteration, _t, we can find

_t+l= _t+ A_t by expanding VI(_ TM) in a

Taylor series and retaining only the first term.

Thus using (23) we proceed via a Newton

method to get

N-I _: ^ _Xs

i=2 v_j

. N-I .= 02ri

k=l i=2 _k O_k O_j

Ox sbx s _2x s -, _
(Y

= 0. (24)

Applying (24) to each of n design variables

results in a linear system of n equations

which drives the design variables to their

optimal value. Near the minimum, ?i and

(Xs - xs) are small, and the second derivative

terms may be neglected. This avoids the

computation of the second derivatives and

comprises the Gauss-Newton method.

system is then

n N-I-_ _i

k=l i=2 %k

_ Ori
i___2riO_j + O0_ j

The

(25)

To implement (25) we must accurately

compute Or'd0_j. In the following sections

we investigate several methods to compute

these derivatives.

SQP Method

The sequential quadratic program method is

described in detail in many references, e.g.

Haftka and Giirdal, Ref. 8, and no details are

provided here. The algorithm used in this

work is developed by Schittkowski, Ref 9.

SENSITIVITY METHODS

Finite-Differences

The optimization routines require either

0r_0_j and 0xd0_j or 01/0_j which can be

computed using finite-differences. In this

work, first order forward and backward

approximations,

(_l'i 1 rr -,- ' ,--

i( 1 "'"

-ri(_l,-'-_n) ], (26)

_ri = _--_ [ri(_l,..-_n )

-ri(_l,_2,"-,_j - A_j,--., _n), (27)

10



andsecondorder centraldifferenceapproxi-
mations,

_ 1
2zXg

(28)

were investigated. Numerical results did not

indicate a clear advantage to any of the three.

The central difference approximation requires

2N additional forward solutions, whereas the

one sided differences require only N addi-

tional forward solutions. Results presented

in this paper use the forward difference

approximation.

We concluded from a study that a compu-

tational domain containing at least 41 grid

points and A_ = 10 .4 are sufficient for

computing the design sensitivities accurately.

Direct Discrete

This method computes the design sensi-

tivities by applying the chain rule of differen-

tiation to the discrete governing equations.

While this method is cheaper than the finite-

difference approach, it is more involved to

implement. Further, the calculation of the

sensitivities requires knowledge of the flow

solving algorithm.

In this formulation, we distinguish

between the flow variables, u, and the design

variables {. The flow variables are the values

of the velocity at the grid points in the

domain, and are themselves functions of the

design variables. In addition to u, we

include the shock position, Xs, which is also

dependent on {. Considering the strained

and shock penalized objective function we

have,

I = I[fi(_), xs(_)]. (29)

Applying the chain rule to (29) to compute

the sensitivity, we have

_j _a _j _X s _j'

(30)

where

kaOl a N'
(31)

and

La ,ja ,j a jj "
(32)

The straining function is defined in (21)

and in general is a function of u and xs,

= fi[u(_), x,(_)]. (33)

Differentiation with respect to the jth design

variable yields

°_ii -°3fi °3u + °3fi axs (34)
03_j O-)U03_j 03Xs a_j'

where

11



bfl
u'--

bu

c)U1 3U 2 _UN

bile bfi2 bfi2

bul bu2 _uN

_uN _uN _u_
_ul _u2 3UN

,.,l"

(35)

(36)

Ax
xs[u(_)] = x j, _ (u. - u j0.

Ujs+I -- Ujs

(40)

The derivative of the shock position with

respect to the jth design variable is thus

(41)

where

and

 =Lax, ax--7" ax,l
(37)

The shock position is defined where the

Rankine-Hugoniot relation (7) is satisfied. In

a numerical solution where UL and ug are not

clearly defined, we take the position of the

shock to be the point in a steep compression

where the Mach number is one, which may

be written as

/
1.U(Xs; _) = u, = ./2h o

_/ 7+1
(38)

Discretized, we locate the shock by linear

interpolation

Us = Ujs + Ujs+l -- Ujs (X s -- Xjs) = U, (39)
Ax

where the shock lies between the js and js+l

grid points. Solving for the shock position

yields

bx.__._=rbx , bx, bx_ l

au Laul au2 au__l"
(42)

Substituting (34) and (41) into (30) gives us

an expression for the design sensitivities

31 = V v 3__.u.u (43)

where

vT OI(bfi 3fi 3x s) bI 3x s+

From equations (21), (22), and (40) we

can obtain analytic expression to evaluate all

the derivatives in (43) with the exception of

3U/_j. The direct discrete method applies

the chain rule to the governing equations

discretized by some numerical scheme. We

have N discretized equations that are, in

general, functions of the flow variables and

the design variables. These equations are

given the symbol w,

12



wl = wl(ul..... UN,_l,..._n) = 0

W2 = W2(Ul ..... UN'_I .... _n) = 0

WN=WN(Ul.....UN,_I...._.)=0. (45)

Differentiating (45) with respect to the jth

design variable, we f'md

Equation (50) must be solved n times to

find the sensitivities with respect to all the

design variables. For other problems where

N is extremely large, it may not be possible

to store the L-U decomposition of J. In such

a case solving (50) n times would be

expensive.

--= +J--=0, (46)

where

Wm[W 1 W 2 ... WN] T, (47)

b_j L b_j _j _j J '

(48)

and

bw_.._!.l bwl bwl

bul bu2 bUN

bw 2 bw 2 OWN

3ul 3u2 bUN
; - .. •

OWN bwN OwN

but bu2 bUN

(49)

We can find btllb_j by solving the linear

system

(50)

Adjoint Discrete

A third method to compute design sensi-

tivities from the discrete equations is the

adjoint method. We define an augmented

objective function

I* = I + _.Tw, (51)

where I is defined in (22), LT is a row vector

of Lagrange multipliers and w is the column

vector of discretized governing equations.

The sensitivity with respect to the jth design

variable is

31" bI +

b_j _j b_j
(52)

The f'trst term on the right hand side has

been expanded in the derivation of the direct

discrete method (equation (43)). The deriva-

tive of the governing equations has also been

expanded in equation (46). Substituting (43)

and (46) into (52) yields

= _+A, _ +J_ .
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We rearrange(53) to collect terms multiply-

ing 8u/8_j to get

_---_ t,_-jj ju. (54)

The vector of Lagrange multipliers is arbi-

trary. If _, is chosen such that

jT_ = -v, (55)

then the sensitivity is

(56)

The advantage this method has over the

direct discrete method is evident with very

large systems. Equation (55) has to be

solved only once to calculate all the Lagrange

multipliers. The sensitivities maybe then

computed inexpensively using (56).

Comparison

For a design case involving three design

variables and the artificial viscosity flow

solver, sensitivities have been recorded in

tables 1, 2, and 3. Each table contains sensi-

tivities calculated by each method. Table 1

corresponds to the discontinuous objective

function, table 2 uses coordinate straining,

and table 3 uses coordinate straining with a

shock penalty. We see that all three methods

produce similar results for the design

scnsluVltles.

i

Finite- Direct
Difference Discrete

Adjoint
Discrete

31/_1 -4.914e-2 --4.921e-2 -4.921e-2

_1/_2 6.200e-2 6.23 le-2 6.23 le-2

3I/_3 -2.995e-1 -3.003e-1 -3.003e-1
I

Table I: Sensitivity comparison using the discontin-
uous objective function.

i i

Finite- Direct
Difference Discrete

Adjoint
Discrete

3I/3_t 2.312e-3 2.305e-3 2.305e-3

31/_2 4.012e-4 3.996e-4 3.996e-4

0I/a_3 -2.514e-3 -2.534e-3 -2.534e-3

Table 2: Sensitivity comparison using the coordinate
strained objective function.

Finite- Direct Adjoint
Difference Discrete Discrete

0I/0_ -1.355e-2 -1.369e-2 -1.369e-2

_I/_2 -5.326e-2 -5.260e-2 -5.260e-2
_[/a_3 -8.726e-1 -8.741e-1 -8.741e-1

Table 3: Sensitivity comparison using the coordinate
s_ained and shock penalty objective function.

RESULTS

Design cases were run varying the

number of design variables, the flow solution

algorithm, the method of calculating the

sensitivities, and the optimization routine.

The initial values of the design variables

describe the area distribution shown in figure

13. The initial distribution places the shock

wave significantly far away from the target

shock so that the interaction of the flow

discontinuity and the discretization of the

flow field on the optimization process

becomes important. Figure 14, 15, and 16

show the initial velocity solution in compari-

son to the target for each of the flow solving

algorithms. Average CPU times on a SGI

Iris 340 VGX to compute the velocity field

14
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Figure 13: Initial area Distribution
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Figure 14" Initial velocity profile using exact flow
solver.
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flow solver.
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Initial velocity profile using Godunov

i.e., solution to (3) are listed in table 4. The

exact solution was computed in a very small

amount of CPU time, less then 0.5 sec.

1.61"SI ................ _:i: ................. t................. :.................. ._.................

1.4 ........... ....... _ .................

1.2_

,i........ .........i............................
o.,........., .................
0.6 ......... _ ................. i......... __...

0.4 • " " ' • • • _ - • • ' - - - _ , , ,
0 0.2 0.4 0.6 0.8

Dismnc_ Along Duct

Figure 16: Initial velocity profile using artificial
viscosity flow solver.

I

Ave. CPU

(sec._ per sol'n
Exact Solution 0
Godunov Solution 8

Artificial Viscosi_ Solution 3
Table 4: CPU time for flow field solutions.

Shock-Fitting

The shock-fitting objective function was

tested using the finite-difference method with

the SQP optimization routine. As mentioned

earlier, the objective function is tailored for

the case where the jump in velocity across the

discontinuity is clearly defined. For this

reason only exact flow solution results are

presented. In comparison, the design process

is attempted using the discontinuous objective

function. Tables 5, and 6 list the initial,

final, and targeted values of the design

variables for optimization of the discon-

tinuous and shock-fitted objective functions

using 3 and 7 design variables. We see that

the shock-fitted objective function will

converge to the target area distribution

whereas the discontinuous objective function

converges to the incorrect solution. The SQP

optimization algorithm allows the user to

15



specify maximum and minimum limits on the

design varaibles. In the case of the

discontinuous objective funciton, many

design variables were driven to these limits.

Discontin Shock-
-uous fitted

_initial _final _final _target
1.1 1.1110 1.1822 1.1586

1.2 1.1824 1.4010 1.3975
1.4 1.3830 1.7662 1.6364

Table 5: Shock-fitted results for 3 design variables

Discont. Shock-
fitted

_initial _finai _final _target
1.0643 1.0879 1.0718 1.0799
1.1000 1.1404 1.1644 1.1586
1.1471 1.3000 1.2625 1.2700
1.2000 1.2000 1.3988 1.3975
1.2658 1.2500 1.5164 1.5251
1.4000 1.4000 1.5958 1.6364
1.6202 1.8000 1.7139 1.7151

Table 6: Shock-fitted results for 7 design variables

Comparison of Sensitivity Algorithms

In the following paragraphs the design

processes using the finite-difference, direct

discrete, and adjoint discrete methods for

computing design sensitivities are compared.

Specifically, the cost measured in CPU time

for computing the sensitivities and time to

compute the design are used as a basis for

comparison. In this comparison, the artificial

viscosity algorithm is used for the computa-

tion of the flow solution and the Jacobian, J.

Table 7 lists the pertinent data for this

comparison. In table 7, F-eval refers to the

number of flow field solutions needed to

converge the design. This number is equal to

one plus the number of forward evaluations

needed per iteration since an extra solution is

required to check for convergence.

Sensitivity CPU refers to the average time to

compute one design sensitivity/)I/O_j. CPU

time indicates the total time required to

complete the optimization.

As expected the direct discrete method is

much more efficient than the finite difference

method.

CONCLUSIONS

In this paper we have developed several

algorithms to calculate design sensitivities.

In the application of these methods, compli-

cations involving the interaction between

flow discontinuities and the discretization of

the flow field cause the design process to fail.

We have shown that both shock fitting and

the coordinate straining and shock penalty

technique can overcome these difficulties.

No. of Design No. of No. of Sensitivity CPU
Variables Iterations F-evals CPU (sec) Time

Finite-Difference 3 13 53 2.79 179
Finite-Difference 7 30 241 3.54 937
Finite-Difference 19 39 1561 3.28 2323

Direct Discrete 3 14 15 .010 97
Direct Discrete 7 32 33 .0057 229
Direct Discrete 19 39 40 .0042 243

Adjoint Discrete 3 14 15 .010 98
Adjoint Discrete 7 32 33 .0043 228

Adjoint Discrete 19 39 40 .0021 241

Table 7: Comparison of Sensitivity Algorithms using the artificial viscosity solver
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Sensitivity methodsareeasily adaptableto
coordinate straining with a shock penalty

which makes the optimization algorithm

efficientandrobustfor casesinvolving flow

discontinuities. The finite-difference algo-

rithm, direct discrete and adjoint discrete

methodprovide similar designresults. The
finite-difference methodsolvesthe forward

problem N+I times per iteration and is

impractical where the flow calculation is
expensive.Thedirectmethods,thoughmore

involvedto implement,havesignificanttime

savings.
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